Sains Malaysiana 53(5)(2024): 1149-1166

http://doi.org/10.17576/jsm-2024-5305-14

 

Optimizing Methylene Blue Dye Adsorption onto Liquid Natural Rubber-Based Hydrogel: Kinetics, Isotherms and Reusability

(Mengoptimumkan Penjerapan Pewarna Biru Metilena pada Hidrogel Berasaskan Getah Asli Cecair: Kinetik, Isoterma dan Kebolehgunaan Semula)

 

OMAR D. ABDUL SATTAR1,2, ROZIDA MOHD KHALID2,3, SITI FAIRUS M. YUSOFF2,3,*

 

1Department of Chemistry, College of Sciences, University of Diyala, Iraq

 2Department of Chemical Sciences, Faculty of Science andTechnology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

3Polymer Research Centre (PORCE), Faculty of Science andTechnology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

Received: 21 January 2024/Accepted: 26 March 2024

 

Abstract

In recent years, notable advancements have taken place in the textile industry, particularly with the widespread use of synthetic dyes such as methylene blue (MB). However, the environmental impact of these dyes has raised significant concerns. Their potential to influence both chemical and biochemical demand poses risks, leading to potential disruptions in aquatic plant photosynthesis. Additionally, concerns exist regarding the toxicity and potential carcinogenicity of these dyes to humans. This study achieved successful hydrogel synthesis through the efficient utilization of ultrasonic methods, combining liquid natural rubber (LNR), acrylic acid (AAc), and pectin (Pc) to adsorb MB from aqueous solutions. Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM) were employed to analyze the structure. Utilizing Response Surface Methodology (RSM), the study investigated the effects of the AAc:LNR weight ratio and Pc weight on hydrogel preparation for MB removal. This led to the development of a quadratic polynomial model with an ANOVA-derived R2 value of 0.9970. Optimal conditions for hydrogel production were identified as a 3.00 g/g AAc:LNR weight ratio and 0.0325g of Pc, resulting in an impressive 99.07% MB removal effectiveness. The limit of detection (LOD) for methylene blue adsorption was calculated at 0.64 ppm. The kinetics and isotherms of MB removal were described by the pseudo-second-order and Freundlich models, respectively. Furthermore, the investigation into hydrogel reusability demonstrated its capability for up to five utilization cycles. The LNR/AAc/Pc hydrogel exhibits promising potential as an effective, cost-efficient, and environmentally conscious adsorbent for MB removal. This makes it applicable to water treatment scenarios involving cationic dyes.

 

Keywords: Acrylic acid; adsorption; natural rubber; pectin; Response Surface Methodology

 

Abstrak

Beberapa tahun kebelakangan ini, terdapat kemajuan yang signifikan dalam industri tekstil, khususnya dengan penggunaan pewarna sintetik seperti metilina biru (MB). Walau bagaimanapun, kesan alam sekitar daripada pewarna ini telah menimbulkan kebimbangan yang ketara. Pewarna ini berpotensi untuk mempengaruhi permintaan kimia dan biokimia yang boleh menyebabkan gangguan dalam fotosintesis tumbuhan akuatik. Selain itu, terdapat risiko berkaitan dengan ketoksikan dan potensi karsinogen kepada manusia. Kajian ini telah berjaya mensintesis hidrogel melalui penggunaan kaedah ultrasonik yang cekap dengan menggabungkan getah asli cecair (LNR), asid akrilik (AAc) dan pektin (Pc) untuk menjerap MB daripada larutan akues. Spektroskopi Inframerah Transformasi Fourier (FTIR) dan Mikroskopi Elektron Imbasan (SEM) digunakan untuk menganalisis struktur hidrogel. Dengan menggunakan Kaedah Gerak Balas Permukaan (RSM), penyelidikan ini mengkaji kesan nisbah berat AAc:LNR dan berat Pc terhadap penghasilan hidrogel dalam penyingkiran MB. Ini menghasilkan model polinomial kuadratik dengan nilai R2 yang diperoleh daripada ANOVA sebanyak 0.9970. Keadaan optimum untuk penyingkiran hidrogel dikenal pasti sebagai nisbah berat AAc:LNR sebanyak 3.00 g/g dan 0.0325 g Pc yang menghasilkan keberkesanan penyingkiran MB sebanyak 99.07%. Had umum penemuan (LOD) bagi penjerapan biru metilina telah dihitung pada 0.64 ppm. Kinetik dan isoterma penyingkiran MB masing-masing dijelaskan oleh model pseudo-tertib kedua dan Freundlich. Selain itu, kajian mengenai kebolehgunaan semula hidrogel menunjukkan keupayaannya untuk sehingga lima kitaran kegunaan. Hidrogel LNR/AAc/Pc menunjukkan potensi yang baik sebagai penjerap yang berkesan, kos-cekap dan peka alam sekitar untuk penyingkiran MB. Ini menjadikannya sesuai untuk senario rawatan air yang melibatkan pewarna kation.

 

Kata kunci: Asid akrilik; getah asli; Kaedah Gerak Balas Permukaan; pektin; penjerapan

 

REFERENCES

Abdel-Halim, E.S. & Al-Deyab, S.S. 2014. Preparation of poly(acrylic acid)/starch hydrogel and its application for cadmium ion removal from aqueous solutions. Reactive and Functional Polymers 75: 1-8. doi:10.1016/j.reactfunctpolym.2013.12.003

Ahmad, N.H., Mohamed, M.A. & Yusoff, S.F.M. 2020. Improved adsorption performance of rubber-based hydrogel: Optimisation through response surface methodology, isotherm, and kinetic studies. Journal of Sol-Gel Science and Technology 94(2): 322-334. doi:10.1007/s10971-020-05254-7

Aiza Jaafar, C.N., Zainol, I., Ishak, N.S., Ilyas, R.A. & Sapuan, S.M. 2021. Effects of the liquid natural rubber (LNR) on mechanical properties and microstructure of epoxy/silica/kenaf hybrid composite for potential automotive applications. Journal of Materials Research and Technology 12: 1026-1038. doi:10.1016/j.jmrt.2021.03.020

Allouss, D., Essamlali, Y., Amadine, O., Chakir, A. & Zahouily, M. 2019. Response surface methodology for optimization of methylene blue adsorption onto carboxymethyl cellulose-based hydrogel beads: Adsorption kinetics, isotherm, thermodynamics and reusability studies. RSC Advances 9(65): 37858-37869. doi:10.1039/c9ra06450h

Amnuaypanich, S. & Kongchana, N. 2009. Natural rubber/poly(acrylic acid) semi-interpenetrating polymer network membranes for the pervaporation of water-ethanol mixtures. Journal of Applied Polymer Science 114(6): 3501-3509. doi:10.1002/app.30836

Asgari, G., Roshani, B. & Ghanizadeh, G. 2012. The investigation of kinetic and isotherm of fluoride adsorption onto functionalize pumice stone. Journal of Hazardous Materials 217-218: 123-132. doi:10.1016/j.jhazmat.2012.03.003

Bao, Z., Xian, C., Yuan, Q., Liu, G. & Wu, J. 2019. Natural polymer-based hydrogels with enhanced mechanical performances: Preparation, structure, and property. Advanced Healthcare Materials 8(17): e1900670. doi:10.1002/adhm.201900670

Bhattacharyya, R. & Ray, S.K. 2015. Removal of congo red and methyl violet from water using nano clay filled composite hydrogels of poly acrylic acid and polyethylene glycol. Chemical Engineering Journal 260: 269-283. doi:10.1016/j.cej.2014.08.030

Cui, Y., Xiang, Y., Xu, Y., Wei, J., Zhang, Z., Li, L. & Li, J. 2020. Poly-acrylic acid grafted natural rubber for multi-coated slow release compound fertilizer: Preparation, properties and slow-release characteristics. International Journal of Biological Macromolecules 146: 540-548. doi:10.1016/j.ijbiomac.2020.01.051

Dada, A.O., Olakekan, A.P., Olatunya, A.M. & Dada, O. 2012. Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk. IOSR Journal of Applied Chemistry 3(1): 38-45. doi:10.9790/5736-0313845

Erfani, M. & Javanbakht, V. 2018. Methylene blue removal from aqueous solution by a biocomposite synthesized from sodium alginate and wastes of oil extraction from almond peanut. International Journal of Biological Macromolecules 114: 244-255. doi:10.1016/j.ijbiomac.2018.03.003

Firdaus, F., Idris, M.S.F. & Yusoff, S.F.M. 2019. Adsorption of nickel ion in aqueous using rubber-based hydrogel. Journal of Polymers and the Environment 27(8): 1770-1780. doi:10.1007/s10924-019-01469-0

Foo, K.Y. & Hameed, B.H. 2010. Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal 156(1): 2-10. doi:10.1016/j.cej.2009.09.013

Gnanasambandam, R. & Proctor, A. 2000. Determination of pectin degree of esterification by diffuse reflectance. Food Chemistry 68(3): 327-332.

Gomes, R.F., de Azevedo, A.C.N., Pereira, A.G.B., Muniz, E.C., Fajardo, A.R. & Rodrigues, F.H.A. 2015. Fast dye removal from water by starch-based nanocomposites. Journal of Colloid and Interface Science 454: 200-209. doi:10.1016/j.jcis.2015.05.026

Hakam, A., Rahman, I.A., Jamil, M.S.M., Othaman, R., Amin, M.C.I.M. & Lazim, A.M. 2015. Removal of methylene blue dye in aqueous solution by sorption on a bacterial-g-poly-(acrylic acid) polymer network hydrogel. Sains Malaysiana 44(6): 827-834. doi:10.17576/jsm-2015-4406-08

Hamidon, N.H., Abang Zaidel, D.N. & Mohd Jusoh, Y.M. 2020. Optimization of pectin extraction from sweet potato peels using citric acid and its emulsifying properties. Recent Patents on Food, Nutrition & Agriculture 11(3): 202-210. doi:10.2174/2212798411666200207102051

Ho, Y.S. & McKay, G. 1999. Pseudo-second order model for sorption processes. Process Biochemistry 34(5): 451-465. doi:10.1016/S0032-9592(98)00112-5

Jamaluddin, N., Yusof, M.J.M., Abdullah, I. & Yusoff, S.F.M. 2016. Synthesis, characterization, and properties of hydrogenated liquid natural rubber. Rubber Chemistry and Technology 89(2): 227-239. doi:10.5254/rct.15.84869

Jiao, T., Guo, H., Zhang, Q., Peng, Q., Tang, Y., Yan, X. & Li, B. 2015. Reduced graphene oxide-based silver nanoparticle-containing composite hydrogel as highly efficient dye catalysts for wastewater treatment. Scientific Reports 5: 11873. doi:10.1038/srep11873

Junlapong, K., Maijan, P., Chaibundit, C. & Chantarak, S. 2020. Effective adsorption of methylene blue by biodegradable superabsorbent cassava starch-based hydrogel. International Journal of Biological Macromolecules 158: 258-264. doi:10.1016/j.ijbiomac.2020.04.247

Kratchanova, M., Pavlova, E. & Panchev, I. 2004. The effect of microwave heating of fresh orange peels on the fruit tissue and quality of extracted pectin. Carbohydrate Polymers 56(2): 181-185. doi:10.1016/j.carbpol.2004.01.009

Krishnamoorthy, M., Ahmad, N.H., Amran, H.N., Mohamed, M.A., Kaus, N.H.M. & Yusoff, S.F.M. 2021. BiFeO3 immobilized within liquid natural rubber-based hydrogel with enhanced adsorption-photocatalytic performance. International Journal of Biological Macromolecules 182: 1495-1506. doi:10.1016/j.ijbiomac.2021.05.104

Lagergren, S.K. 1898. About the theory of so-called adsorption of soluble substances. Sven. Vetenskapsakad 24: 1-39.

Langmuir, I. 1917. The constitution and fundamental properties of solids and liquids. II Liquids. J. Am. Chem. Soc. 39: 1848-1906.

Langmuir, I. 1916. The constitution and fundamental properties of solids and liquids. Part I. Solids. Journal of the American Chemical Society 38(11): 2221-2295. doi:10.1021/ja02268a002

Lazim, A.M., Musbah, D.L., Chin, C.C., Abdullah, I., Mustapa, M.H.A. & Azfaralariff, A. 2019. Oil removal from water surface using reusable and absorptive foams via simple fabrication of liquid natural rubber (LNR). Polymer Testing 73: 39-50. doi:10.1016/j.polymertesting.2018.11.016

Lee, K.Y. & Choo, W.S. 2020. Extraction optimization and physicochemical properties of pectin from watermelon (Citrullus lanatus) Rind: Comparison of hydrochloric and citric acid extraction. Journal of Nutraceuticals and Food Science 5(1): 1. doi: 10.36648/nutraceuticals.5.1.1

Liu, C., Omer, A.M. & Ouyang, X. 2018. Adsorptive removal of cationic methylene blue dye using carboxymethyl cellulose/k-carrageenan/activated montmorillonite composite beads: Isotherm and kinetic studies. International Journal of Biological Macromolecules 106: 823-833. doi:10.1016/j.ijbiomac.2017.08.084

Ma, D., Zhu, B., Cao, B., Wang, J. & Zhang, J. 2017. Fabrication of the novel hydrogel based on waste corn stalk for removal of methylene blue dye from aqueous solution. Applied Surface Science 422: 944-952. doi:10.1016/j.apsusc.2017.06.072

Mathew, P., Sasidharan, D. & Rakesh, N.P. 2020. Copper(I) stabilized on N,N′-methylene bis-acrylamide crosslinked polyvinylpyrrolidone: An efficient reusable catalyst for click synthesis of 1,2,3-triazoles in water. Applied Organometallic Chemistry 34(7): e5642. doi:10.1002/aoc.5642

Mittal, H., Maity, A. & Ray, S.S. 2015. Synthesis of co-polymer-grafted gum karaya and silica hybrid organic-inorganic hydrogel nanocomposite for the highly effective removal of methylene blue. Chemical Engineering Journal 279: 166-179. doi:10.1016/j.cej.2015.05.002

Mohafezatkar Gohari, R., Safarnia, M., Dadvand Koohi, A. & Baghban Salehi, M. 2022. Adsorptive removal of cationic dye by synthesized sustainable xanthan gum-g p(AMPS-co-AAm) hydrogel from aqueous media: Optimization by RSM-CCD model. Chemical Engineering Research and Design 188: 714-728. doi:10.1016/j.cherd.2022.10.028

Mohammadzadeh Pakdel, P., Peighambardoust, S.J., Foroutan, R., Arsalani, N. & Aghdasinia, H. 2022. Decontamination of Fuchsin dye by carboxymethyl cellulose-graft-poly(acrylic acid-co-itaconic acid)/carbon black nanocomposite hydrogel. International Journal of Biological Macromolecules 222: 2083-2097. doi:10.1016/j.ijbiomac.2022.10.007

Mohd, N.H., Kargazadeh, H., Miyamoto, M., Uemiya, S., Sharer, N., Baharum, A., Lee Peng, T., Ahmad, I., Yarmo, M.A. & Othaman, R. 2021. Aminosilanes grafted nanocrystalline cellulose from oil palm empty fruit bunch aerogel for carbon dioxide capture. Journal of Materials Research and Technology 13: 2287-2296. doi:10.1016/j.jmrt.2021.06.018

Mohd Noor, N.F. & Yusoff, S.F.M. 2020. Ultrasonic-enhanced synthesis of rubber-based hydrogel for waste water treatment: Kinetic, isotherm and reusability studies. Polymer Testing 81: 106200. doi:10.1016/j.polymertesting.2019.106200

Nakason, C., Kaesaman, A. & Supasanthitikul, P. 2004. The grafting of maleic anhydride onto natural rubber. Polymer Testing 23(1): 35-41. doi:10.1016/S0142-9418(03)00059-X

Nesic, A.R., Velickovic, S.J. & Antonovic, D.G. 2014. Novel composite films based on amidated pectin for cationic dye adsorption. Colloids and Surfaces B: Biointerfaces 116: 620-626. doi:10.1016/j.colsurfb.2013.10.031

Nouri, M. & Mokhtarian, M. 2020. Optimization of pectin extractions from walnut green husks and characterization of the extraction physicochemical and rheological properties. Nutrition and Food Sciences Research 7(2): 47-58. doi:10.29252/nfsr.7.2.47

Oliveira, T.Í.S., Rosa, M.F., Cavalcante, F.L., Pereira, P.H.F., Moates, G.K., Wellner, N., Mazzetto, S.E., Waldron, K.W. & Azeredo, H.M.C. 2016. Optimization of pectin extraction from banana peels with citric acid by using response surface methodology. Food Chemistry 198: 113-118. doi:10.1016/j.foodchem.2015.08.080

Pandey, M., Choudhury, H., Segar Singh, S.K., Annan, N.C., Bhattamisra, S.K., Gorain, B. & Amin, M.C.I.M. 2021. Budesonide-loaded pectin/polyacrylamide hydrogel for sustained delivery: Fabrication, characterization and in vitro release kinetics. Molecules 26(9): 2704. doi:10.3390/molecules26092704

Pei, Y., Chu, S., Chen, Y., Li, Z., Zhao, J., Liu, S., Wu, X., Liu, J., Zheng, X. & Tang, K. 2017. Tannin-immobilized cellulose hydrogel fabricated by a homogeneous reaction as a potential adsorbent for removing cationic organic dye from aqueous solution. International Journal of Biological Macromolecules 103: 254-260. doi:10.1016/j.ijbiomac.2017.05.072

Peng, M., Chen, G., Zeng, G., Chen, A., He, K., Huang, Z., Hu, L., Shi, J., Li, H., Yuan, L. & Huang, T. 2018. Superhydrophobic kaolinite modified graphene oxide-melamine sponge with excellent properties for oil-water separation. Applied Clay Science 163: 63-71. doi:10.1016/j.clay.2018.07.008

Polgar, L.M., Fortunato, G., Araya-Hermosilla, R., van Duin, M., Pucci, A. & Picchioni, F. 2016. Cross-linking of rubber in the presence of multi-functional cross-linking aids via thermoreversible Diels-Alder chemistry. European Polymer Journal 82: 208-219. doi:10.1016/j.eurpolymj.2016.07.018

Pongsathit, S. & Pattamaprom, C. 2018. Irradiation grafting of natural rubber latex with maleic anhydride and its compatibilization of poly(lactic acid)/natural rubber blends. Radiation Physics and Chemistry 144: 13-20. doi:10.1016/j.radphyschem.2017.11.006

Primo, G.A., Alvarez Igarzabal, C.I., Pino, G.A., Ferrero, J.C. & Rossa, M. 2016. Surface morphological modification of crosslinked hydrophilic co-polymers by nanosecond pulsed laser irradiation. Applied Surface Science 369: 422-429. doi:10.1016/j.apsusc.2016.02.047

Santos, J.D.G., Espeleta, A.F., Branco, A. & De Assis, S.A. 2013. Aqueous extraction of pectin from sisal waste. Carbohydrate Polymers 92(2): 1997-2001. doi:10.1016/j.carbpol.2012.11.089

Senthil Kumar, P. 2014. Adsorption of lead(II) ions from simulated wastewater using natural waste: A kinetic, thermodynamic and equilibrium study. Environmental Progress & Sustainable Energy 33(1): 55-64. doi:10.1002/ep.11750

Sharma, A.K., Priya, Kaith, B.S., Panchal, S., Bhatia, J.K., Bajaj, S., Tanwar, V. & Sharma, N. 2019. Response surface methodology directed synthesis of luminescent nanocomposite hydrogel for trapping anionic dyes. Journal of Environmental Management 231: 380-390. doi:10.1016/j.jenvman.2018.10.038

Singh, N., Agarwal, S., Jain, A. & Khan, S. 2021. 3-Dimensional cross linked hydrophilic polymeric network 'hydrogels': An agriculture boom. Agricultural Water Management 253: 106939. doi:10.1016/j.agwat.2021.106939

Taheri, S., Hassani, Y., Sadeghi, G.M.M., Moztarzadeh, F. & Li, M.C. 2016. Graft copolymerization of acrylic acid on to styrene butadiene rubber (SBR) to improve morphology and mechanical properties of SBR/polyurethane blend. Journal of Applied Polymer Science 133(29): 43699. doi:10.1002/app.43699

Thakur, S., Chaudhary, J., Kumar, V. & Thakur, V.K. 2019. Progress in pectin based hydrogels for water purification: Trends and challenges. Journal of Environmental Management 238: 210-223. doi:10.1016/j.jenvman.2019.03.002

Tongkham, N., Juntasalay, B., Lasunon, P. & Sengkhamparn, N. 2017. Dragon fruit peel pectin: Microwave-assisted extraction and fuzzy assessment. Agriculture and Natural Resources 51(4): 262-267. doi:10.1016/j.anres.2017.04.004

Vudjung, C. & Saengsuwan, S. 2018. Biodegradable IPN hydrogels based on pre-vulcanized natural rubber and cassava starch as coating membrane for environment-friendly slow-release urea fertilizer. Journal of Polymers and the Environment 26(9): 3967-3980. doi:10.1007/s10924-018-1274-8

Wei, Z., Zhao, J., Chen, Y.M., Zhang, P. & Zhang, Q. 2016. Self-healing polysaccharide-based hydrogels as injectable carriers for neural stem cells. Scientific Reports 6: 37841. doi:10.1038/srep37841

Wongthep, W., Srituileong, S., Martwiset, S. & Amnuaypanich, S. 2013. Grafting of poly(vinyl alcohol) on natural rubber latex particles. Journal of Applied Polymer Science 127(1): 104-110. doi:10.1002/app.37829

Xu, H., Zhang, H., Ouyang, Y., Liu, L. & Wang, Y. 2016. Two-dimensional hierarchical porous carbon composites derived from corn stalks for electrode materials with high performance. Electrochimica Acta 214: 119-128. doi:10.1016/j.electacta.2016.08.043

Yan, B., Chen, Z., Cai, L., Chen, Z., Fu, J. & Xu, Q. 2015. Fabrication of polyaniline hydrogel: Synthesis, characterization and adsorption of methylene blue. Applied Surface Science 356: 39-47. doi:10.1016/j.apsusc.2015.08.024

Yang, X., Zhang, J., Wang, Y., Wen, H. & Xie, J. 2021. Role of chitosan-based hydrogels in pollutants adsorption and freshwater harvesting: A critical review. International Journal of Biological Macromolecules 189(235): 53-64. doi:10.1016/j.ijbiomac.2021.08.047

Yusoff, S.F.M., Firdaus, F., Ahmad Zahidi, N.A. & Abdul Halim, N.H. 2022. Optimization, kinetics isotherm, and reusability studies of methylene blue dye adsorption using acrylic acid grafted rubber hydrogel. Sains Malaysiana 51(10): 3307-3320. doi:10.17576/jsm-2022-5110-16

Zhang, L., Lu, H., Yu, J., McSporran, E., Khan, A., Fan, Y., Yang, Y., Wang, Z. & Ni, Y. 2019. Preparation of high-strength sustainable lignocellulose gels and their applications for antiultraviolet weathering and dye removal. ACS Sustainable Chemistry & Engineering 7(3): 2998-3009. doi:10.1021/acssuschemeng.8b04413

Zhou, C., Wu, Q., Lei, T. & Negulescu, I.I. 2014. Adsorption kinetic and equilibrium studies for methylene blue dye by partially hydrolyzed polyacrylamide/cellulose nanocrystal nanocomposite hydrogels. Chemical Engineering Journal 251: 17-24. doi:10.1016/j.cej.2014.04.034

 

*Corresponding author; email: sitifairus@ukm.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous